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Computational errors are analyzed for existing schemes and their variants of estimating the 
sphere size distribution from the observed size distribution of cross sections. First, possible 
methods are classified according to their discrete approximation schemes of the basic integral 
equation, and the condition numbers of the coefkient matrices are examined. Then, 
asymptotic forms of error are derived. It is shown that the main source of error is the 
singularity of the basic integral equation of Abel type and that the magnitude of the error 
largely depends on the treatment of the singularity. Numerical examples are also given. 
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1. INTRODUCTION 

Estimating the size distribution of particles in a material from an observed size 
distribution of their cross sections on a cutting plane randomly placed in the 
material is an important problem in material science, geology, biology and medical 
science. This problem has been studied by a number of people as an application of 
so called “integral geometry” or “stereology” [l-12]. Especially, the case of 
spherical particle has been extensively studied. This is partly because spheres make 
the theory simple, and partly because particles are spherical or nearly spherical in 
many important problems. 

Procedures of solving this problem have been separately proposed in many dif- 
ferent fields, often independently and repeatedly. In fact, there is so much research 
on this subject, scattered over a wide range of areas, that a complete review is 
almost impossible. (See, for example, the lists of literature in the recent articles of 
Cruz-Orive [13-15-J and Coleman l-15, 163.) However, almost all this research 
aimed to obtain superior procedures by heuristic approaches, and accuracy has 
been tested only by numerical experiments using actual or synthetic data. There has 
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not been a rigorous analysis of the degree of accuracy for these schemes. It is true 
from a practical point of view that it sufftces to know only one most recommended 
scheme. However, a scheme which shows high accuracy for some data of some 
problem is not necessarily good for other data of other problems. It is necessary, 
therefore, to understand the “error mechanism,” in other words, to classify possible 
sources of error and to estimate the behavior of each error source separately. 

The purpose of this paper is not to try to devise a new scheme. Rather, we will 
try to understand the mechanism which produces computational errors for existing 
schemes. First, we classify possible schemes into several classes. There exist a num- 
ber of schemes which are mutually equivalent. It has been customary to classify the 
schemes according to their derivation techniques and many names have been given 
to them-finite difference methods, product integration methods, statistical 
methods, to name a few. However, as long as we are interested in the error 
mechanism of a given scheme, it is not essential to know how the scheme was 
originally devised. There exists an exact analytical formula (an integral equation of 
Abel type), and in principle the problem can be solved analytically. Hence, all the 
existing numerical schemes are approximations of the analytical solution in some 
sense or other. Therefore, we have only to know in what “sense” a given scheme is 
an approximation to the analytical solution. 

All existing procedures divide the range of possible particle sizes into, say, n 
intervals and give a set of linear equations to compute. As the number n approaches 
infinity, the results of all the procedures must converge to the analytical one. 
However, the speed of convergence differs from procedure to procedure, and hence 
it provides a measure of precision inherent to each procedure. In this paper, we 
concentrate on this “computational” viewpoint. We do not consider other sources 
of error like the sampling error, which is also very important in practice. Of course, 
those who use this type of procedure are interested in the “overall” accuracy. 
However, if, for instance, we use a scheme very accurate in computation but obtain 
inaccurate results, we are sure that the error sources should be spotted elsewhere. 
Thus, in order to specify the error sources accurately, we must divide the overall 
procedure into several stages and analyze them separately. 

2. BASIC EQUATIONS OF STEREOL~GICAL ESTIMATION 

Let us first consider the basic equations. They are well known and have been dis- 
cussed again and again by many authors. Here, therefore, we do not give detailed 
and sophisticated arguments of derivation. Actually, the basic principle is very sim- 
ple and is as follows. Suppose spheres of various sizes are distributed in the space, 
and let I;(R) be the radius distribution density, i.e., F(R) dR is the number, per unit 
volume, of those spheres whose radii are between R and R + dR. Place a plane in 
the space. Then, we get a radius distribution density of cross sections, and let it be 
f(r), i.e., j(r) dr is the number, per unit area of the plane, of those cross sections 
whose radii are between r and r + dr. Suppose the spheres are distributed randomly 
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and homogeneously, and the cutting plane is inlinite. Also assume that the dis- 
tribution is sulhciently sparse so that overlapping of particles is negligible. The 
probability that a sphere of radius R is cut by the plane equals the probability that 
the center of that sphere falls within distance R from the plane. Since there are 
F(R) dR such spheres per unit volume, that probability equals 2RF(R) dR per unit 
area of the plane. The probability that a sphere of radius R yields a cross section of 
radius between r and r + dr on the condition that the sphere intersects the plane is 
)2dx1/2R = Id(,/m)l/R = r dr/R dm, as is shown in Fig 1. Multiplying 
this by 2RF(R) dR, and integrating it over possible values of R, we obtain 

.ftr)=ZrJ Rm F(R) dR 

r JzI7’ 
(2.1) 

R max being a maximum possible radius (cf. [2,4-6, 81). Of course, Eq. (2.1) is the 
“expected value” off(r). However, the assumption of random distribution and an 
infinite cutting plane assures the “law of large number,” and hence it can be regar- 
ded as the actual distribution density. The same is true if we place a finite cutting 
plane at random independently a great number of times and take the average over 
these trials. In this case, the distribution should not necessarily be homogeneous. 
Equation (2.1) has a realistic meaning in this sense. 

On the other hand, we are sometimes interested in observing not a cutting sur- 
face, but a thin layer of finite thickess, especially when optical microscopes are used. 
If we observe the distribution of cross sections by projection through the layer, we 
always overestimate them. This is kown as the “Holmes effect” or the “overprojec- 
tion effect.” If the center of a sphere is inside the layer, its exact radius is observed. 
If t is the thickness of the layer, there are tF(r) dr such spheres of radius between r 
and r + dr per unit area of the layer. If the center of a sphere is outside the layer, the 
cross section on the side of the particle center is observed, and the relation between 

FIG. 1. The relationship between the position of a cutting plane and the radius of the cross section. 
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its size and the sphere size is the same as in the case of a cutting plane (cf. [ 18-20, 
15, 161). Hence, instead of Eq. (2.1) we obtain 

f(r) = C(r) + 2r j”““” F(R) dR 
r JF7 

. (2.2) 

If we examine the above reasoning carefully, we can easily see that the same for- 
mulation also holds in the case of distributed circles on a plane cut by randomly 
placed line. In this case, F(R) is interpreted as the distribution density of the radius 
per unit area and f(r) the distribution density of the “half length” of the cross sec- 
tion per unit length of the probe line. It turns out that the formulation is also 
similar in the case of distributed circular disks in the space cut by a randomly 
placed plane. Let F(R) be the distribution density of the radius of circular disks, i.e., 
F(R) dR is the number, per unit volume, of those disks whose radii are between R 
and R + dR. Similarly, let f(r) be the distribution density of the half length of the 
cross section on the cutting plane. Note that the intersection line of a given direc- 
tion on a circular disk is uniformly distributed along the direction normal to it 
whatever the orientations of the circular disk and the cutting plane may be. Hence, 
we obtain, instead of Eq. (2.2), the following equation (cf. [2, 21 I): 

f(r)=tF(r)+gljRmar F(R)dR 
r jiF7 

(2.3) 

There are several other assumptions sometimes relevant. One is the effect of 
“resolution threshold,” which means that cross sections smaller than a certain size 
are not visible. Another is the effect of the “capping angle,” which means that 
spherical caps in a thin layer subtending angles smaller than a certain angle are not 
visible. If these assumptions are adopted, the range of r and R and the domain of 
integration in Eqs. (2.1) and (2.2) are modified. (See Cruz-Orive [ 151 for details.) 
However, as we will see later, the computational error mainly comes from the treat- 
ment of the singularity R = r of the integration. Hence, the error mechanism does 
not change if we assume the resolution threshold or the capping angle. For this 
reason, we do not consider these effects here. 

As has been seen, we consider, in this paper, distributions in the space and on the 
plane in terms of “per unit volume” and “per unit area”, respectively. Namely, 
jp F(R) dR is the “number of particles per unit volume” and fp f(r) dr is the 
“number of cross sections per unit area,” and we do not normalize them to 1. This 
is most natural when we are considering geometrical distributions in the space or 
on the plane, for our interest is in the “amount” of distribution, not the 
“probability.” Moreover, we can obtain linear relations between observed data and 
quantities of interest. If we normalized them, the relations would become fractional. 
Since the expected value of a ratio is not equal to the ratio of expected values, the 
computational error would enter nonlinearly, and we could not easily understand 
its effect. For this reason, we treat our schemes in terms of Eq. (2.1) or (2.2). This is 
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one of the viewpoints different from other papers on this subject. In the following 
analyses, we assume that F(R) (and hence f(r)) is smooth and bounded. 

3. GENERAL FRAMEWORK OF NUMERICAL SCHEMES 

In actual numerical computations, the integration in Eq. (2.1) or (2.2) must be 
replaced by some kind of summation, and different ways of discrete approximation 
yield different forms of computational schemes. In any case, we divide the interval 
[0, R,,,] into n subintervals and approximate the integration by some form of 
summation involving values at fixed n points. Thus, if we are to seek an accurate 
result, we must choose a large number n. However, it is sometimes not possible to 
make n large. Usually, we can observe only a finite number of cross sections in any 
experiment. The radius distribution density f(r) must be estimated from the 
histogram, but, as is well known, the estimation is unreliable if the class intervals 
are too small. Thus, the choice of n is limited. This difficulty can be avoided if we 
consider, instead of the “density”f(r), the (cumulative) “distribution function” 4(r), 
i.e., the number, per unit area, of cross sections of radii equal to or smaller than r. 
It is obtained without regard to class intervals. 

In physics and engineering, chemical engineering in particular, distributions are 
treated in the cumulative sense, because measurement and analysis become easier. 
Various types of scales have been devised so that a given family of distribution 
functions may become straight lines when plotted according to them, and the values 
of involved parameters are immediately read out. As a matter of fact, the 
probability distribution is defined in terms of the distribution function in the theory 
of probability, because it alone is a “function” in the usual sense. (Densities are 
“distributions” in the sense of Schwartz [22, 231.) In order to obtain the density 
profile from a given distribution function, one must differentiate it. If a given dis- 
tribution function is an experimentally observed one, there arises considerable dif- 
ficulty in differentiation, and many techniques have been devised for that. Most of 
them employ “smoothing” of the observed distribution function by one way or 
another and differentiating the result either analytically or’ numerically. These 
include fitting by spline functions and application of low-pass digital filters. Recen- 
tly, Anderssen and Jakeman [24] and Anderssen [25] proposed what they called 
“spectral differentiation,” taking into account the power spectrum of the noise (see 
also Anderssen and Bloomfield [26, 271). 

What we should note here is that the process of differentiation provides a source 
of error different from the approximation of integration and that these two error 
sources are completely different in their behavior. Hence, they must be studied 
separately. Anderssen and Jakeman [24] and Anderssen [25] studied the overall 
accuracy and concluded that division of the interval [0, R,,,] into too many sub- 
intervals for numerical computation would result in poor accuracy. However, as 
will be shown later, the accuracy improves as the number of division increases if we 
treat distribution functions. This forces us to conclude that the inaccuracy observed 
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by Anderssen et al. is due to the differentiation process. In this paper, we divide the 
process into three stages; (i) estimation of the distribution function of cross sec- 
tions, i.e., the sampling technique; (ii) computation of the particle size distribution 
from the distribution of cross sections; and, if desired, (iii) conversion to the den- 
sity, i.e., numerical differentiation. These three stages involve errors of different 
characters. In this paper, we concentrate on stage (ii) of numerical computation, 
assuming that a “good” distribution function of cross sections is obtained, say, by 
averaging a sufficiently large number of data or applying an appropriate smoothing 
technique. 

Integration of Eq. (2.2) yields 

&)=t@(r)+2RN-2jRma’ ,/-d@(R), 
I (3.1) 

where e(R) is the distribution function of the sphere size, i.e., the number, per unit 
volume, of spheres of radii equal to or smaller than R. Here, N is the “numerical 
density, ” i.e., the number of spheres per unit volume and i? is the “mean radius” 
given respectively by 

N = @(R,,,) = i,““‘” F(R) dR, 

a=’ jRmax RF(R) dR. 
No 

(3.2) 

In general, there are two types of approximations which convert this integral 
equation into discrete equations. One is to replace the integral of Eq. (3.1) by sum- 
mation of some kind, resulting in a set of linear equations of the form 

d(ai) = f Aij@(aj), 

j=l 
(3.4) 

where a,‘s are prescribed radius values and A, is a constant matrix. If its inverse 
matrix B, is computed beforehand, the radius distribution of particles is readily 
computed from the radius distribution of cross sections by 

@(ai)= $ Bgql(aj). 
j=l 

(3.5) 

The other way is to invert Eq. (3.1) analytically to express G(R) in terms of 4(r) 
and then to replace the integral by summation of some kind, resulting in a formula 
of the form of Eq. (3.5). This is easily done when t = 0. In this paper, we call for- 
mulae of the former type “implicit formulae” and those of the latter type “explicit 
formulae.” 
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4. CLASSIFICATION OF IMPLICIT FORMULAE 

Consider implicit formulae first. Choose n points 0 = a, < a, < . . . < a, = R,,, in 
the interval [0, R,,,], and put tii = d(ai), Qi = @(ai). According 
obtain 

for i = O,..., n. If we adopt approximation 

we obtain a formula 

to Eq. (3.1), we 

(4.1) 

(4.2) 

q$=tai+2NR+2 f (Jas,,-II;2-dn)cDj, (4.3) 
j=i 

for i = O,..., n. Throughout this paper, we adopt the following convention: If the 
argument of a square root is either negative or undefined, the square root assumes 
0. If a summation does not have sense, like c;=i, the sum also assumes 0. 

If t = 0, Eq. (4.3) coincides with one of the earliest formulae of this problem 
developed by Scheil [28], Schwartz [29] and Saltykov [30]. However, they all 
wrote the formula in terms of the frequency of each class to suit hand calculations. 
An expression in terms of frequencies is obtained by rewriting Eq. (4.3) in terms of 
fi = di - 4imm 1 and Fi = Qi - Qi- 1. Then, the equation becomes 

A.=2 i (Jm--,/m)Fj, i=l,..., n, (4.4) 
j=O 

which is a familiar form. However, as was stated earlier, we prefer to use Eq. (4.3). 
Equation (4.3) is rewritten in the form of Eq. (3.4) by noting that tie = Q. = 0 and 

hence lNi?= -2cJc1 (&-&)Qj. W e call this Method 1. If we resolve the 
matrix A, into t6,+ A;, where 6, is the Kronecker delta, we obtain the following 
expression for A;. 

Method 1. 

A;? = 2C-(uj+l- Uj)+~~-~~], j<n 

2[u, - JiQ], j= n. (4.5) 

In Eq. (4.2) the square root is evaluated at the right end of the interval 



236 KANATANI AND ISHIKAWA 

[ai-, , a,]. If, instead, we use the mean of the values at both ends, we can expect a 
more accurate approximation. Namely, if we use approximation 

and determine 2NR from & = Q0 = 0, we obtain the following: 

Method 2. 

-(aj+I-aj-,)+jm-jm, j<n 
a,+a,-,-j--j-, j= n. (4.7) 

Instead of using the mean of the values at both ends, we can also use the value at 
the midpoint, i.e., 

s” j$=ij d@(R) -dD j” d@(R), 
u,-I a,- 1 

(4.8) 

where aj _ 1,2 = (uj- i + uj)/2. This scheme corresponds to the approaches of Wicksell 
[31], Goldsmith [ 181 and others. Again, 2NR is determined from be = o0 = 0. The 
coefficient matrix becomes: 

Method 3. 

A!,= 2C-(uj+1/2-uj-1/2 

i 

)+jm-Jml, j<n 
II 2Can-,,2-J~ly j=n, (4’9) 

where aj + 1,2 = ( ar + aj + 1 )/2. 
All the above methods approximate dm by a constant in each subinterval. 

However, it has a singularity at R = ai, and the derivatives of all ranks become 
infinity there. In other words, it is “strongly curved” in its neighborhood. Hence, 
replacing it by a constant in each subinterval is a very poor approximation. Since 
we are considering a smooth distribution, we can expect a higher precision 
approximation if we approximate Q(R) by a linear function in each subinterval and 
execute the integration analytically. Namely, if we put d@(R) N ( Gj - Gj _ 1 ) dR/hj- , 
in the interval [ai-, , uj], where hi= uj+ i - uj, we obtain 

j”_, ,li=? d@(R)-& (@j-@j-,) s” JmdR, (4.10) 
I a,-, 

and & = @,, = 0 determines 2NR. This leads to Method 4, which is mathematically 
equivalent to those described by Bach [32], Cruz-Orive [lS] and others: 
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Method 4. 
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1 -(~j+l-~j-l)> j-ci<n 

I -(oi+l-“i~I)+~(OLi,i+l-a”). 

I 

i= j<n 

A;= 
-cli,j-l, i-c j<n (4.11) 

%-l+% -&~~tn-~i.n-l), i<j=n 
n 1 

a,-1+4, i= j=n, 

where we have put 

~ii=Uj~~-Uaflog(Uj+~~). (4.12) 

(If one is uneasy about the dimensionality, replace log( * ) by log[ ( * )/a], where a is 
a constant whose dimension is length. The result would be the same.) 

5. CLASSIFICATION OF EXPLICIT FORMULAE 

A small change of variables reduces Eq. (2.1) to an integral equation of Abel 
type, and it can be inverted analytically (cf. [2, 333). The final form of Q(R) 
becomes 

(5.1) 

Inversion of Eq. (2.2) for t > 0 is also possible (cf. [lS, 191). However, since it does 
not turn out a simple form suitable for numerical computation, we consider here 
only Eq. (5.1). Choosing 0 = u,, < a, < * 3 . < a, = R,,, , we have 

Here again, various kinds of approximation are just as possible as in the case of 
implicit formulae. Corresponding to Method 1 is approximation 

L;-, ;f;-J&; f, ddr). (5.3) 

As before, N is determined from the condition a0 = 0, which yields the following: 
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B,= 

1 1 -- 
rca,’ 

j<i<n 

j=i<n 

i<j<n (5.4) 

i<j=n 

i= j=n. 

Corresponding to Method 2 is approximation l/-J-- (l/,/m + 
l/Jm)/2. However, this cannot be applied, since l/d- has a singularity at 
r = ai and hence becomes infinity there. This can be avoided by adopting, in 
correspondence with Method 3, approximation 

Again, N is determined from Q0 = 0, which yields the following: 

Method 6. 

1 1 - 
[ 
-- 

= a,- 112 J&g 

1 1 
--5 

\ 71 a,- ll2 

(W 

j=i<n 

i< j<n (5.6) 

i<j=n 

i= j=n. 

Corresponding to Method 4 is approximating the distribution function d(r) by a 
linear function in each subinterval. Put dd(r)k (4j- +ji- ,) dr/hj- I in the interval 
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[uj- i, uj]. This approximation was also used by Anderssen and Jakeman [24] and 
Anderssen [25]. In our case, we have 

(5.7) 

The numerical density N is determined from @,-, = 0. Here, special care is necessary. 
The integral in the right-hand side of Eq. (5.7) does not converge for j= 1 when 
i = 0. However, the integral of Eq. (5.1) is convergent even when R = 0, because 
f(r)= O(r) near r =0 (cf. Eq. (2.1)). If we approximate d(r) near r=O by a 
quadratic function 

we obtain the following: 

Method 7. 

B,= 

-(loga,-loga,-,)- 

(5.8) 

i=j= 1 

l=j<i 

l<j<i 

i=j<n (5.9) 

i<j=n 

i=j=n, 

where 

p(j = lOg(Uj + Jm). (5.10) 
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(Again, all log(. ) can be replaced by log[ (. )/a], where a is a constant whose 
dimension is length.) 

6. THE CONDITION NUMBER OF THE SCHEME 

We have shown that all the computational schemes studied so far have, irrespec- 
tive of the derivation techniques, the same form 

$=A@, Q=W, (6.1) 

where $ is the input vector whose ith component is di, CD is the output vector 
whose ith component, is @,, and B = A - ‘. Hence, once these matrices are com- 
puted, all the necessary computation for given data is just a matrix multiplication, 
and no difference exists in computation speed. Now, if the input vector + contains 
errors, the output vector Q, has corresponding errors. It is very difficult to describe 
the amount of the output error in general terms because it depends on the form of 
the input data $. Still, there is an input independent index which describes a 
“bound,” not the exact amount, of errors. It is called the “condition number” of a 
matrix and is widely used as a rough index of error sensitivity in numerical analysis 
(cf. [34]). Let lixllP denote the “Lp norm” of a vector x and llAllp its “adjoint norm” 
of a matrix A, i.e., 

IMP= SUP IIAxllp/llxllp. 
XfO 

(6.2) 

Hence, we always have IlAx lip 6 llAllp IIxil,,. Here, we consider only the case 
p= 1,oo: 

p= 1: llxll1 = t IXil, IlAll,=max f lAiil (6.3) 
i= 1 i i=l 

p=co: llxll m = m?x l-4, /IAIl, =my f IAiil. (6.4) I .j= 1 

In functional analysis, the L2 norm is most frequently used because it is easy to 
treat analytically. For example, variations are expressed in linear forms. However, 
the L' and L" norms are most convenient in numerical analysis, because they have 
simple intuitive meanings, i.e., the “maximum” and the “average,” respectively, 
while no such simple meaning is associated with the L2 norm. Moreover, the 
adjoint L' and L" norms of Eqs. (6.3) and (6.4) are readily computed from a given 
matrix, whereas numerical computation of the adjoint L2 norm involves eigen- 
values, which are difficult to compute accurately, especially when the dimension is 
large. 

Let Q be an ideal input value and @ the associated ideal output value. If 4 + d+ 
is the actual input, the output becomes fD + da, where d@D = Bd+. Hence, 
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" 
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" 
a b 

FIG. 2. Condition numbers of Methods 1-7; (a) c, and (b) c, 

Ild@jlP d jlBllp lld4II,. Since ll+l/, = IlAcDII, < [IAll, ll@llP, the relative errors of the 
input and the output are related by 

Il~~llp/llq7 6 cp Il4$/llQII,~ (6.5) 

where cP is the condition number defined by 

cp = llAllp IIBII,~ (6.6) 

From this, we can conclude that if the condition number is very large, the scheme 
might be vulnerable to input errors. Figures 2a and b plot the condition numbers 
c1 and c, of Methods l-7. As is seen, the condition number is approximately 
proportional to a certain power of n. As will be shown later, Methods 4 and 7 give 
a high order of accuracy, but their condition numbers are not small compared with 
other methods. In contrast, Methods 1 and 5, which turn out to be of poor 
accuracy, have smaller condition numbers than the rest. Thus, we must realize that 
methods of high accuracy may be very sensitive to input errors, though the amount 
of error depends on a particular form of the input data. The correlation between the 
condition numbers and actual errors is studied later for a synthetic model. 

7. ERRORS OF THE IMPLICIT FORMULAE 

We now consider the errors due to the discrete approximations we used 
and derive their asymptotic forms for large n. Since we are not necessarily de- 
manding that the partition 0 = a, < a, < ... < a, = R,,, be equidistant over the 
interval [0, R,,,], we must first define the way in which the partition points are 
increased. Let m(R) be the “partition point density” defined in such a way that 
lim, -+ m (the number of partition points in [a, b])/n = 1: m(R) dR. By definition, 
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jp m(R) dR = 1. We consider only those partitions for which m(R) is defined as a 
smooth positive function over [0, R,,,]. Furthermore, we assume that the partition 
for finite n is done in such a way that 

hi= l/nm(Ui) + O( l/n’), 

where hi = a,, 1 -ai is the length of the ith subinterval. 
Next, we define “residuals” A i tii, A,4 and A4i respectively by 

(7.1) 

- 2 fRmar ,/SF dO( R) = (approximate form) + A 1 q5i, 
0, 

(7.2) 

2RN = (approximation form) + A,& (7.3) 

dj = (approximate form) + A$i. (7.4) 

Hence, Atii = A,& + A i #i. Then, we obtain the following asymptotic forms: 

Method 1. 

(7.7) 

(7.5) 

(7.6) 

This result is obtained by expanding ,/m into a Taylor series at R = aj in each 
subinterval [ai-, , aj] and by approximating the summation of the remainders by 
an integration. In doing it, special care is necessary to take into account the 
singularity at R = ai. The integrals in these equations appear because the 
approximation (4.2) of Method 1 replaces ,/m in each subinterval by its value 
at the right end. The integral in Eq. (7.5) is convergent but is a singular integral. 
Hence the terms 0( l/n ,/r) appears: 

Method 2. 

A,4i=G&k4 
m(uJ3’*n3’* 

&4=&j;FV&+O(-$), 

A4, = C2 J;;;. F(ui) 
’ m(ui)3’2n3’2 -lo $9 

0 

(7.8) 

(7.9) 

(7.10) 
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where Cz is a constant. This result is obtained by applying the Lagrange inter- 
polation formula in each subinterval [uj- i , uj] and by considering the sum of the 
remainders. It turns out that the errors near the singular point R =ai are 
predominant over the rest. It is difficult to determine the exact value of the constant 
Cz. However, its approximation is obtained by replacing the sum by a divergent 
integral and by evaluating its asymptotic behavior, and we obtain C2w -5 d/12. 

Method 3. 

A14i= c3 JZF(ai) 

m(ui)3’2n3’2 
+o $9 

0 

(7.11) 

Aai=$j~~W~ (.3)9 +o 1 (7.12) 

A#,= c3 JZFtai) 

’ m(ui)312n312 
+o 1 

0 n2 * 
(7.13) 

Thus, the form is the same as Method 2 except for the constant C3. This result is 
also obtained by expanding ,/m at R = (ai-, + ai)/ in each subinterval 
[uj- i, uj] and by considering the sum of the remainders. Again, it turns out that 
the errors near R = ui are predominant. An approximate value of C3 is obtained 
similarly, and we have C3 N (48 - 31 &)/24. 

Method 4. 

A,d= -$, an RF’(R) dR +. 
ai JiiqmoZ 

(7.14) 

(7.15) 

A’i= -& 

an RF’(R) dR -_ 
Jb, dm m(R)2 1: 

(7.16) 

Since this method approximates O(R) by a piecewise linear function, the error term 
is estimated by applying the Lagrange interpolation formula to G(R) of Eq. (3.1) in 
each subinterval [uj- 1, uj] and by approximating the sum of the remainders by an 
integral. The integral in Eq. (7.14) is convergent but is a singular integral. Hence, 
the term O(l/n2 &) appears. 

Let A+ be a vector whose ith component is Adi. Since $= A@ + A+, we have 
0 = B+ - BA+. Hence, the error involved in the solution B+ is given by 

AQii= - i B,A#j. (7.17) 
j=l 
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Since B, = O( l/n), the order of error is about the same as that of de, and we can 
roughly say that the order of error is l/n for Method 1, l/n & for both Method 2 
and Method 3, and l/n’ for Method 4. However, the amount of the error is also 
affected by the form of Q(R), as has been shown. 

8. ERRORS OF THE EXPLICIT FORMULAE 

Define the error terms A,cPi, A,@ and Audi by 

= (approximate form) + A, cDi, 

N = (approximation form) + A,@, (8.2) 

Qi = (approximate form) + AQi, (8.3) 

respectively. Hence AQj = A 1 Qi + A,, @. 

Method 5. 

A,@i=h’EJ;;+O 

A (#j=Gf’(o)lw+O 
0 

-- 

40) n 

c; f’(0) log n 
A@i=Jl;c~~+~~+O 

(8.4) 

(8.5) 

(8.6) 

This result is obtained by expanding l/,/r ’ t a m o a Taylor series at r = uj in 
each subinterval [uj- i , aj] and by considering the sum of the remainders. Since 
both Eqs. (8.5) and (8.6) have the term 0( l/n), we obtain Eq. (8.6). It follows that 
the errors near r = 0 and r = ai are predominant, though the approximation (5.3) of 
Method 5 replaces l/J- a, in each subinterval by its value at the right end. 
Approximate values of Cs and C; are obtained as before, and we have Csw 
-3 J5/4rc and C;- I/271. 

Method 6. 

(8.7) 

(8.8) 

(8.9) 
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This result is obtained by expanding l/dz;i at r = (uj- 1 + Uj)/2 in each sub- 
interval [ai_, , uj] and by considering the sum of the remainders. It turns out that 
the errors near r= ai are predominant. Approximate values of Cs and Cd are 
obtained as before, and we have C6 - -(97 fi - 96)/96x and Cb - -1124~. 

Method 7. 

A~@i=~~~,~~~n3,2+0 

A @=c;f’W+, 
0 

m(O) n 

Ao,= W’(O)+ G.f- ‘(4 
’ m(O)n &m(ui)3’2n3’2 

(8.10) 

(8.11) 

(8.12) 

This result is obtained by applying the Lagrange interpolation formula to d(r) in 
each subinterval [a,- i, uj] and by considering the sum of the remainders. It turns 
out that A, Qi is dominated by the errors near r = ui and A, @J by the errors near 
r = 0. Since both Eqs. (8.10) and (8.11) have the term 0( l/n’), we obtain Eq. (8.12). 
Approximate values of the C7 and C, are obtained as before, and we have C,- 
5,/$24rr and C,- -1/127t. 

Thus, the order of error is lower for the explicit formulae than for the 
corresponding implicit formulae. This is because the degree of singularity of the 
explicit integral equation (5.1) is higher than that of the corresponding implicit 
equation (3.1) and hence the same scheme of approximation yields larger errors for 
the explicit formulae. Of course, the amount of the error also depends on the par- 
ticular form of 4(r). 

9. NUMERICAL EXAMPLES AND CONCLUDING REMARKS 

As an example, let R,,, be 1 and the numerical denity N be 1, and consider the 
distribution density 

F(R) = 30R2( R - 1)‘. (9.1) 

The mean radius R is l/2. The distribution function is given by 

Q(R) = R3(6R2 - 15R + 10). (9.2) 

Consider the case of t = 0. The corresponding distribution function of cross sections 
is determined by Eq. (3.1) and is given by 

cj(r)=l-t(49r4-8r2+4),/~+~r4(r2+2)log l+Jl-r2 
r ’ (9.3) 
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0.5 r.R 1 

b 

FIG. 3. A sphere size distribution and the corresponding size distribution of cross sections; 
(a) distribution densities and (b) distribution functions. 

Its distribution density is given by 

f(r)= -;~(23r2-2)~~+;,l(3,2+4)log r . 
l+Jr--;I 

(9.4) 

Equations (9.1)-(9.4) are plotted in Fig. 3. Let Eq. (9.3) be the input to reconstruct 
Eq. (9.2). For simplicity, we adopt equipartition of radius (a,= i/n). Hence, 
m(R) = 1. We adopt 114@11 o. = maxildQij (maximum error) and (Jd@(l ,/n = C;= 1 
(dQil/n (average error) as measures of the error magnitude. They are plotted in 
Fig. 4, which shows that the orders of convergence are in good accordance with our 
estimates. Fig. 5 shows the error distributions (solid) for Methods 5-7 with n = 30, 
60, 120 and their estimates (dashed), i.e., Eqs. (8.6), (8.9) and (8.12) with terms of 
0( . ) neglected. As is seen, our estimate is fairly good. Note that the error is zero at 
R = 0 because we used the relation Q. = 0 in constructing the schemes. We could 
easily guess that primitive schemes like Methods 1 and 5 may turn out poor 

10-l 

<10-z 

7F 

9ro-3, 

10-b. 

5 10 
n 

50 100 

a b 

FIG. 4. Errors of Methods l-7 for the distribution of Fig. 3; (a) lld@ll~ and (b) lld@ll ,/n. 
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- 0.0 

c 

FIG. 5. Distributions of actual errors (solid) and estimations (dashed) for the distribution of Fig. 3 
with n = 30, 60, 120; (a) Method 5, (b) Method 6 and (c) Method 7. 

accuracy, but we cannot guess to what extent they are poor and to what extent 
elaborate ones like Methods 4 and 7 are superior unless the error behavior is 
analyzed. 

As is expected, implicit formulae, especially Method 4, exhibit high accuracy for 
this example. Therefore, they are expected to be of practical value, though the con- 
clusion is not decisive and we must be careful about the possible input error sen- 
sitivity. This may appear to be in contradiction to the claim of Anderssen and 
Jakeman [20] and Anderssen [21], who reject implicit formulae. The basic dif- 
ference between their approach and ours lies in the fact that theirs involves differen- 
tiation processes, i.e., the use of densities, and overall accuracy is examined with the 
input noise taken into account, while ours concentrates on the computational 
aspect in terms of distribution functions. 

Next, consider the input error sensitivity for this input. Adopting a simple model, 
we suppose that the particle distribution is subject to a stochastic Poisson process. 
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Since all the quantities involved are linear in observed number of particles, the 
variance of an input value is proportional to its expectation value. Hence, if di is 
interpreted as the expactation value, the variance is I+,, where k is a constant 
depending on the sampling method, e.g., the area of the probe plane and the num- 
ber of trials over which the average is taken. Suppose, for simplicity, 4, is obtained 
by independent trials for each i. (This is rather an artificial hypothesis, for 4’s are 
always correlated.) The variance of Qi is k CJ’= 1 Bfqh, and its standard deviation is 

its square root. Put (TV = & and Ci = Jm,. Figure 6 plots 11X11 J[all 5 and 
(IZCJI Jllall r. We can see a clear correlation between this result and the condition 
numbers (cf. Fig. 2). 

As we have seen, implicit formulae are in general expected to be computationally 
superior to explicit formulae. However, aside from the fact that no matrix inversion 
is necessary, explicit formulae have the advantage that the asymptotic error can be 
estimated in terms of the observed size distribution of cross sections. In other 
words, though the error may be larger, we can estimate its behavior. The fact is 
utilized for various purposes. For example, we can make a correction by using the 
asymptotic estimate. The error behavior of Method 7 after this correction is shown 
in Fig. 7, where f’(O) and f’(a,) in Eq. (8.12) are estimated by the four and three 
point difference formulae, respectively, over &,, d, ,..., 4,. This may seem in con- 
tradiction to our previous statement that accurate numerical differentiation is dif- 
ficult, but here differentiation need not be accurate. Even if errors of order l/n for 
f’(O) and of order l/J% for f’(ai) are involved, they are absorbed in the term 
0( l/n*) of Eq. (8.12). In our case, the error order of differentiation is l/n* for both 
f’(0) and f’(hi) and small errors need not be worried about. We can see that the 
correction of Method 7 is about as good as Method 4. 

Another thing we can make use of out of this study is the Richardson-type 
“acceleration.” Consider the correction of Method 7, and put its output to be 

a b 

FIG. 6. Input error sensitivity for the input of Fig. 3 based on a Poisson model; (a) ((E:II Jjlall o. and 
(b) l/W Jlld I. 
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a b 

FIG. 7. Errors of Method 4 (M4), acceleration of Method 4 (AM4), Method 7 (M7), correction of 
Method 7 (CM7) and acceleration of corrected Method 7 (ACM7); (a) jld@ilm and (b) lldOll,/n. 

@Jai) when the number of partition is n. Since the order of the remaining error is 
about l/n*, we can improve accuracy by 

I” =; (4@,(R) - @n,2(R)) (9.5) 

for R = ai with even i when n is even. The same idea applies to Method 4 as well, 
since it has also errors of order about l/n”. Figure 7 shows the error behavior after 
the acceleration, indicating a considerable improvement. (The norms are taken only 
for even-indexed components.) Thus, our study of the error mechanism not only 
makes us explain observed error behaviors but also gives us various techniques to 
improve accuracy. It is true that, in practice, computational accuracy is not the 
only concern. Also important is the sampling error, which seriously affects the 
estimation even if we have a “perfect scheme” which exactly converts the basic 
equation (e.g., see Watson [35]). However, if an accurate scheme is available, it 
can accurately single out other error sources. Since integral equations of Abel type 
are frequently encountered in various problems in physics, our analysis is also 
applicable to many problems other than stereology where similar numerical com- 
putation is involved. 
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